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1. Introduction

The major purpose of this paper is to illustrate a class of prob-
lems which are of mutual interest to the reliability, queuing and
inventory communities. Although often separately studied, interests

in such problems really are common, and mutual benefits could accrue

by interaction among these communities.

2. A Reliability Problem

In Mann, Schafer and Singpurwalla (1974), Section 10.3 deals

with reliability models for maintained systems. In particular, Section

10.3.1 gives an example of a single unit which fails according to an
exponential distribution with mean time to failure (MTTF) of, say,
1/x and is repaired (as good as new) according to an exponential dis-

tribution with mean time to repair (MTIR) of, say, 1/u This process

is then a continuous time Markov process (CIMP) and is driven by the
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infinitesimal generator or, as it is also often called, the rate matrix

0 1
0 - A

Q = . (1)
1 K -U

The two possible system states are 0 (unit is operating) or 1
(unit is down, and undergoing repair).

We desire to find the availability of the unit at time ¢t , which
we denote as A(t) , and to do this we need to find p(t) , the state
probability (row) vector at time t , that is,

(&) = (py(t), by (D))

and hence

Hl

A(t) po(t)

To find p(t) , we must solve the Kolmogorov forward equations
(a set of differential-difference equations)
p'(t) = p(e)Q , (2)

with the added condition that the probabilities sum to one, namely,

1 =p(tle, (3)
where e 1s a column vector of 1's . Thus writing out (2) and (3) we
have

Po(t) = =Apg(t) + pp, (£) (4)
pp(e) = Apy(e) - upy(6) (5)
1 = polt) +p,(0) (6)

and we must solve the set of equations (4) and (6) or (5) and (6). This

can be easily done using Laplace transforms [we employ the boundary

o B
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condition CpO(O) =1, pl(O) = O] ; that is, the unit is working at time

zero] and obtain

M) = po(0) = 3+ g &I )

Note that the steady state availability is

= 14 = H_
A = 1lim A(t) A
£t

the well known result for an alternating renewal process.

3. An Expanded Reliability Problem

We now consider an expanded version of the problem treated in
Section 2. Consider now N wunits and c¢ repair channels (c < N)

We now define A(t) as the probability that at least some desired number,
say M , of the units is operational at time t . If more than M are
operational, the excess are considered spares and are on cold standby
(note that there are a total of N-M = y spares in the system, but that
all y spares are not always available). If less than M units are
operational, the system is performing below the desired level.

A system state can be described by the number of units up (or
operating, call this o, ) or by the number of units in or awaiting re-
pair (call this np ). Either state descriptor gives complete informa-
tion since nU + np = N . For this problem, the Q matrix is N+1 % N+1 -
as there are a total of N+1 states: 0,1,2,...,N . Hence it is neces-

sary to solve a set of N+1 linear, first-order differential equations

of the type given by (2).
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4. A Queuing Problem

The above "reliability problem" is also a 'classical" problem in
queuing theory and is known as the machine repair problem [see Cooper
(1981, Section 3.8), Kleinrock (1974, Section 3.8), or Gross and Harris
(1974, Section 3.6)]. Figure 1 shows a schematic of this problem, mod-
eled as a closed queuing network. This is a two node, closed queuing
network, where the total of N units are, at various times and in
various combinations, distributed among the two nodes. At the operating
node, we show M parallel service channels so that a queue at thié node

represents the cold standby spares available.

5. A Repairable Item Inventory Problem

The problem discussed in Sections 3 and 4 also fits the category
of an inventory problem. It is a typical "repairable item inventory
problem,"” for which it is desiréd to find the optimal combination of the

numbers of spares and repair channels, so as to satisfy certain service

'Operating Repair

|

| ®
: Repair

Spares (:) | Queue (:)

|

— OO0 | : 00| i

Figure 1, Schematic of a machine repair problem.
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level performance criteria. Thus the problem mathematically is to find
y and c¢ which

Minimize E[Cost/Year] = kly + k,c

2

i}
|t
N
)
~

¥y .
. > - .
subject to A(ti) nzo pn(ti) z21l-a (4

N

< { =
Z npn(ti) L (i1 =1,2,...,T) ,
n=0

1]

L(ti)

where P is the probability that n units are at the repair node,
kl is the annual cost associated with having a spare (amortization of
purchase cost including interest, insurance, storage, etc.), k2 is the
annual cost assoclated with each repair channel (amortization, salary of
repair crew, maintenance of repair equipment, etc.), 1 - o is the
desired availability, and £ 1is the desired limit on the average number
of units.in or awaiting repair. The dots represent other constraints
that may possibly be imposed, for example, a constraint on total
budget.

In order to solve this problem, it is necessary first to find
E(t) » and this is what we focus our attention on here. We refer the
reader to Gross, Miller and Soland (1983) for a discussion of the opti-
mization aspects of such problems.

Consider a more complex multi-echelon version of the above
problem as shown in Figure 2. Pictured here are three "field" locations,
each with local repair capability. However, depending on the problem

causing the failure, a certain percentage of failed units must be sent
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Local Operating
Repair Location |_
1 1

Depot Depot

R X

Local Operating S epatr
Repair Location A A
2 2
Local |_ Operating
Repair Location
3 3

Figure 2. Multi-echelon repairable item
inventory system.

to a higher echelon (depot) to be repaired. Each field location, as
well as the depot, stocks spare units which, if available,‘are dis-
patched from the location to which the failed unit is sent. If spares
are not available, requests are backordered.

As long as all failure and repair times are exponential, we still
have a CIMP, albeit with a very large (but finite) Q matrix. TFor
example, Table 1 shows a specific example which yields a state space
of over 100 million states.

For such systems, shown in Figure 2, we might desire Al(t) R
Az(t) s A3(t) and A123(t) , where Ai(t) is the probability that Mi
units are operating at field location i at time t (i = 1,2,3) and
A123(t) is the probability that at time t , M are operating at

1

location 1, M2 at location 2, and M3 at location 3 simultaneously.

In the example given in Table 1, Mi =25, 1=1,2,3

.
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TABLE 1

THREE LOCATION, TWO ECHELON EXAMPLE

Location N M c
1 29 25 3

2 29 25 3

3 29 25 3
Depot 6 - 4

Number of states = |§| = 100,706,625

6. Solution Techniques

Obviously, for large systems, the use of Laplace transforms for
obtaining E(t) is not feasible. Since our systems are finite, numeri-
cal methods can be ytilized. Numerical integration techniques such as
Runge-Kutta or predictor-corrector can be employed for moderately sized
systems. We found for these tfpes of problems, another method which we
refer to as randomization to be more efficient. For details of the
development of this procedure, we refer the reader to Grassmann (1977a
and 1977b), or to Gross and Miller (1984a, 1984b). The randomization
method, as far as we can ascertain, dates back at least to a paper by
Jensen (1953), and is mentioned, often under other names (for example,
subordination of Markov chains to Poisson processes or uniformized
embedded Markov chains), by Cohen (1969), Feller (1971), Ginlar (1975),

Keilson and Kester (1977), and Keilson (1979), to mention a few.
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The basic idea of the randomization technique is to view the CTMP
in a certain way, which allows the major computation to be performed on
an imbedded discrete time Markov chain (DTMC) called the uniformized
chain. The transitions for this DIMC are generated by an underlying
Poisson process (hence the name randomization). The single-step
transition probability matrix of the DIMC and the parameter (rate) of
the Poisson process are functions of the original rate matrix, Q =
{qij} , of the CTMP.

Let

e o gy
1

and
P=Q/A+1I
Then the imbedded uniformized DTMC has single-step transition probability
matrix P and the transitions of this DTMC are generaged by a Poisson
process with rate A . Note that since the diagonal elements of Q
are negafive, that is,
a, =- § a5
(1#3)
A is actually the absolute value of the minimum diagonal element, which
is the mean exit rate of the state with the largest mean exit rate.
Denoting the state probability vector after k transitions of

the DIMC by ¢(k) , it can be shown [see Gross and Miller (1984a)] that

® k -At
e (Ae) e
P () = kzo ¢ (k) ~= : (8)

where pj(t) is the probability that the CIMP is in state j at time
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t (jth element of p(t) ), ¢j(k) is the probability that the imbedded
uniformized DTMC is in state j after k transitions (jth element
of ¢(k) ) and (At)ke—At/k! is the probability of k tramsitions of

the DIMC in clock time t . The usual recursion can be used to get

¢j(k) , that is,

$(0) = p(0) 5 9k) = ¢(k-1)P . (9
To use (8) for computational purposes, the infinite sum must be
truncated. The error of truncation can be nicely bounded since we are

discarding a Poisson tail; and, in fact, the computing version of (8)

becomes
T(e,t) k -At
2 (At) " e
= k) —————— 10
P, (t) kzo ¢ () “=g=— (10)
where
T(g,t) kAt

U _e o, ¢ (11)

]

K=0 k!

€ being the desired error bound. One advantage of this method over
numerical integration (besides efficiency) is the ability to exéctly

bound the computational error.

7. Results

The largest problem solved directly by the procedure described
in the previous section is shown in Table 2. This example is a two
field location, two echelon system with a state space size of 20,748.
Calculated were Al(t) s Az(t) R Alz(t) , £t =1,2,...,15 , with the

following time-varying scenario. At time t = 6 , a sudden decrease

-9 -
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TABLE 2

TWO LOCATION, TWO
ECHELON EXAMPLE

Location N y c
1 18 4 2
2 13 2 2
Depot - 3 4
e = .001
|$| = 20,748

of MITF occurs. The repair facilities cannot make an "in kind" accommo-
dation until time 10 . Figure 3 shows a plot of Al(t) versus t
[Az(t) an Alz(t) are similar in nature]. The graph shows an initial
Al(O) of 1.0 (we assume at time zero all units are operational) and
thereafter a drop-off toward the steady-state availability as time in-
creases. At time 6 , the increase in failure rate occurs and A(t)
begins to drop off at an increasing rate; heading for a new, lower
steady-state availability. - However, the increase in repair rate at
time 10 causes A(t) to begin to rise, heading back toward the origi-~
nal steady-state availability.

This run took approximately 25 minutes of CPU time on a VAX
11/780 computer using the randomization computation of (10) with a more
efficient procedure than the recursion of (9) [given in Gross and Miller

(1984a)] for calculating ¢ (k)

- 10 -
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Figure 3. Al(t) versus t for sample run.

- 11 -
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As the systems become more complex (more bases, multiple component
types, indenture, more echelons, etc.) the state-space grows rapidly.
We have solved a three location problem, shown in Table 3, using a
truncated state-épace approach, where seldom visited states are "lumped"
together in single absorbing states [see Gross, Kioussis, and Miller
(1984)]. There are over 43 million states, but via the truncation ap-
proach, the state-space was reduced to %3,410 and solved in about 30
minutes CPU time on the VAX 11/780, adding an error of .007 . Calcu-

- lated were Al(t) , A2(t) , A3(t) and A123(t) , for t=1,2,...,15

TABLE 3

THREE LOCATION, TWO
ECHELON EXAMPLE

Location N y c
1 25 1 1
2 24 1 1
3 24 1 1
Depot - 2 1

g = .001

lg| = 43,278,703

- 12 -
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8. Conclusions

We have presented here a class of problems of interest to the
reliability, queuing and inventory communities and briefly demonstrated
a viable solution procedure for these problems. While researchers in
the above communities often go their '"separate ways," better communica-

tion among them should benefit all.
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